$R_{\rm int} = 0.019$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Chlorido(η^4 -cycloocta-1,5-diene)-[(S)-2-(methoxymethyl)pyrrolidine- κN]rhodium(I)

Lutz Dahlenburg,* Harald Treffert and Frank W. Heinemann

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: lutz.dahlenburg@chemie.uni-erlangen.de

Received 22 October 2007; accepted 24 October 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.016; wR factor = 0.035; data-to-parameter ratio = 22.9.

The title compound, $[RhCl(C_8H_{12})(C_6H_{13}NO)]$, which is of interest from the point of view of catalysis, crystallizes with two independent molecules in the asymmetric unit, which is the complete unit cell. Neither the Rh-Cl nor the Rh-N bond lengths deviate significantly from the corresponding dimensions observed for closely related chloride-rhodium complexes in the literature. Individual molecules are interlinked through N-H···Cl hydrogen-bonding interactions.

Related literature

For structurally related rhodium complexes with various chiral and achiral β -amino alcohol ligands, see Dahlenburg *et al.* (2007).

Experimental

Crystal data

[RhCl(C₈H₁₂)(C₆H₁₃NO)] $M_r = 361.71$ Triclinic, P1 a = 6.5499 (2) Å b = 6.6563 (2) Å c = 18.8540 (7) Å $\alpha = 92.253$ (3)° $\beta = 95.026 \ (3)^{\circ}$

Data collection

Bruker-Nonius KappaCCD diffractometer

 $\gamma = 114.841 \ (2)^{\circ}$ V = 740.44 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.32 \text{ mm}^-$ T = 150 (2) K $0.25 \times 0.18 \times 0.10 \text{ mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.730, T_{\max} = 0.880$ 19576 measured reflections

7489 independent reflections 7246 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.016$	H-atom parameters constrained
$wR(F^2) = 0.035$	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$
7489 reflections	Absolute structure: Flack (1983),
327 parameters	3690 Friedel pairs
3 restraints	Flack parameter: -0.013 (13)

Table 1 Selected geometric parameters (Å, $^{\circ}$).

Rh1-N1	2.1236 (15)	Rh2-N2	2.1263 (15)
Rh1-Cl1	2.3960 (6)	Rh2-Cl2	2.3870 (5)
Rh1-C11	2.1199 (17)	Rh2-C25	2.0985 (18)
Rh1-C12	2.1021 (17)	Rh2-C26	2.1154 (18)
Rh1-C7	2.1491 (19)	Rh2-C21	2.1242 (18)
Rh1-C8	2.1300 (19)	Rh2-C22	2.150 (2)
N1-Rh1-Cl1	90.47 (4)	N2-Rh2-Cl2	89.43 (5)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N1 - H1 \cdots Cl1^{i} \\ N2 - H2 \cdots Cl2^{ii} \end{array}$	0.93 0.93	2.59 2.51	3.4888 (16) 3.4028 (16)	163 162

Symmetry codes: (i) x, y + 1, z; (ii) x + 1, y, z.

Data collection: COLLECT (Bruker, 2002); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL-NT (Bruker, 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Support of this work by the Deutsche Forschungsgemeinschaft (Bonn, SFB 583) is gratefully acknowledged. The authors are also indebted to Mr P. Bakatselos for his skilful assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG3061).

References

Bruker (2002). COLLECT, SADABS (Version 2.06) and SHELXTL-NT (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

Dahlenburg, L., Treffert, H., Farr, Chr., Heinemann, F. W. & Zahl, A. (2007). Eur. J. Inorg. Chem. pp. 1738-1751.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2855 [doi:10.1107/S1600536807052920]

Chlorido(η^4 -cycloocta-1,5-diene)[(S)-2-(methoxymethyl)pyrrolidine- κN]rhodium(I)

L. Dahlenburg, H. Treffert and F. W. Heinemann

Comment

Chlorido(η^4 -1,5-cyclooctadiene)[κN -(S)-2-methoxymethylpyrrolidine]rhodium(I), [Rh(Cl)(η^4 -C₈H₁₂){(S)-C₆H₁₃NO}] (I), represents the *O*-methylated analogue of the previously described prolinol complexes [Rh(Cl)(η^4 -C₈H₁₂){(R)-C₅H₁₁NO}] and [Rh(Cl)(η^4 -C₈H₁₂){(S)-C₅H₁₁NO}] which themselves belong to a family of catalytically attractive rhodium compounds containing β -amino alcohol ligands (Dahlenburg *et al.*, 2007). Complex (I) crystallizes from CDCl₃ in the triclinic space group *P*1 with two independent moieties per cell.

Not unexpectedly, neither the Rh—Cl distances nor the Rh—N bond lengths deviate significantly from the corresponding dimensions observed fo closely related chlorido rhodium complexes in the literature possessing *N*-bonded ethanolamine, valinol, prolinol, and norephedrine ligands [Rh—Cl = $2.381 \rightarrow 2.398$ Å and Rh—N = $2.127 \rightarrow 2.137$ Å] (Dahlenburg *et al.*, 2007).

In the solid state the individual complexes of (I) are assembled through N—H···Cl hydrogen bonds (Table 2). The (*R*)enantiomer of the parent prolinol compound [Rh(Cl)(η^4 -C₈H₁₂)(C₅H₁₁NO)] shows similar N—H···Cl (and O—H···Cl) hydrogen-bonding between two crystallographically independent molecules (Dahlenburg *et al.*, 2007).

Experimental

Compound (I) was prepared by the bridge-opening reaction of $[{Rh(\eta^4-C_8H_{12})}_2(\mu-Cl)_2]$ with (S)-2-methoxymethylpyrrolidine, similar to the procedure previously communicated for the syntheses of a number of chlorido(η^4 -1,5cyclooctadiene)rhodium(I) derivatives bearing diverse N-bonded β -amino alcohol ligands (Dahlenburg *et al.*, 2007). The specimen used for the X-ray diffraction study was collected from a partially evaporated NMR sample in CDCl₃ solution.

Refinement

Carbon-and nitrogen-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å; N—H = 0.93 Å) and refined using appropriate riding models. All hydrogen U_{iso} values were fixed at 1.2 times U_{eq} of the preceding carrier atom.

Figures

Fig. 1. Structures of the two crystallographically independent molecules of (I). Displacement ellipsoids are drawn at the 50% probability level.

Chlorido(η^4 -cycloocta-1,5-diene)[(S)-2-(methoxymethyl)pyrrolidine- κN]rhodium(I)

Crystal data

[RhCl(C ₈ H ₁₂)(C ₆ H ₁₃ NO)]	Z = 2
$M_r = 361.71$	$F_{000} = 372$
Triclinic, P1	$D_{\rm x} = 1.622 \ {\rm Mg \ m}^{-3}$
Hall symbol: P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.5499 (2) Å	Cell parameters from 98 reflections
b = 6.6563 (2) Å	$\theta = 6.0-20.0^{\circ}$
c = 18.8540 (7) Å	$\mu = 1.32 \text{ mm}^{-1}$
$\alpha = 92.253 \ (3)^{\circ}$	T = 150 (2) K
$\beta = 95.026 \ (3)^{\circ}$	Plate, yellow
$\gamma = 114.841 \ (2)^{\circ}$	$0.25\times0.18\times0.10~mm$
V = 740.44 (4) Å ³	

Data collection

Bruker–Nonius KappaCCD diffractometer	7489 independent reflections
Radiation source: fine-focus sealed tube	7246 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 28.7^{\circ}$
T = 150(2) K	$\theta_{\min} = 3.3^{\circ}$
$\omega\text{-rotations}$ with 1.70 ° and 76 sec per frame scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$k = -8 \rightarrow 8$
$T_{\min} = 0.730, T_{\max} = 0.880$	$l = -25 \rightarrow 25$
19576 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.016$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0125P)^{2} + 0.1842P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.035$	$(\Delta/\sigma)_{\text{max}} = 0.002$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
7489 reflections	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
327 parameters	Extinction correction: none
3 restraints	Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.013 (13)
Secondary atom site location: difference Fourier map	

Special details

Refinement. 3690 Friedel pairs were used in the refinement of the Flack parameter.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Rh1	0.084451 (15)	0.914650 (14)	0.609209 (7)	0.01109 (4)
Cl1	0.20120 (12)	0.67363 (10)	0.67548 (3)	0.02427 (14)
N1	0.2502 (3)	1.1749 (3)	0.69167 (8)	0.0131 (3)
H1	0.2092	1.2887	0.6803	0.016*
01	-0.0795 (3)	1.0168 (3)	0.84488 (8)	0.0287 (4)
C1	0.5026 (3)	1.2725 (3)	0.69824 (10)	0.0180 (4)
H1A	0.5599	1.3537	0.6561	0.022*
H1B	0.5570	1.1549	0.7026	0.022*
C2	0.5807 (3)	1.4316 (3)	0.76628 (11)	0.0217 (4)
H2A	0.6092	1.5844	0.7549	0.026*
H2B	0.7209	1.4340	0.7916	0.026*
C3	0.3818 (3)	1.3363 (3)	0.81205 (10)	0.0210 (4)
H3A	0.4312	1.2943	0.8580	0.025*
H3B	0.3209	1.4465	0.8220	0.025*
C4	0.2023 (3)	1.1302 (4)	0.76651 (10)	0.0142 (4)
H4A	0.2276	0.9970	0.7788	0.017*
C5	-0.0394 (3)	1.0849 (4)	0.77490 (10)	0.0178 (4)
H5A	-0.0633	1.2207	0.7686	0.021*
H5B	-0.1442	0.9663	0.7387	0.021*
C6	-0.2952 (4)	0.9857 (4)	0.86247 (12)	0.0254 (4)
H6A	-0.3208	0.9189	0.9081	0.038*
H6B	-0.4116	0.8871	0.8250	0.038*
H6C	-0.3029	1.1295	0.8665	0.038*
C7	0.0141 (3)	0.7171 (3)	0.50952 (10)	0.0179 (4)
H7A	0.1378	0.6841	0.5249	0.021*
C8	-0.1764 (3)	0.6376 (3)	0.54673 (10)	0.0177 (4)
H8A	-0.1753	0.5469	0.5843	0.021*
С9	-0.3832 (3)	0.6819 (3)	0.53303 (12)	0.0229 (4)
H9A	-0.4747	0.6343	0.5735	0.028*
H9B	-0.4764	0.5903	0.4894	0.028*
C10	-0.3300 (3)	0.9254 (3)	0.52363 (12)	0.0219 (4)
H10A	-0.3216	0.9514	0.4724	0.026*
H10B	-0.4537	0.9584	0.5394	0.026*
C11	-0.1070 (3)	1.0805 (3)	0.56654 (11)	0.0165 (4)
H11A	-0.1115	1.1258	0.6146	0.020*
C12	0.1055 (3)	1.1619 (3)	0.54041 (10)	0.0155 (4)
H12A	0.2311	1.2644	0.5717	0.019*
C13	0.1534 (4)	1.1028 (3)	0.46791 (10)	0.0213 (4)
H13A	0.3187	1.1521	0.4682	0.026*
H13B	0.1049	1.1838	0.4322	0.026*
C14	0.0326 (4)	0.8540 (3)	0.44560 (11)	0.0238 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H14A	-0.1211	0.8179	0.4219	0.029*
H14B	0.1170	0.8144	0.4107	0.029*
Rh2	0.094539 (15)	0.761289 (15)	0.114302 (7)	0.01106 (4)
Cl2	-0.21538 (8)	0.68239 (9)	0.18309 (3)	0.02146 (10)
N2	0.2549 (3)	0.6455 (3)	0.19530 (9)	0.0143 (3)
H2	0.3952	0.6673	0.1815	0.017*
O2	0.5079 (2)	1.0692 (2)	0.34836 (7)	0.0215 (3)
C15	0.1275 (3)	0.4022 (3)	0.20168 (11)	0.0198 (4)
H15A	0.1370	0.3147	0.1594	0.024*
H15B	-0.0339	0.3633	0.2063	0.024*
C16	0.2431 (4)	0.3587 (4)	0.26888 (11)	0.0248 (4)
H16A	0.3738	0.3297	0.2580	0.030*
H16B	0.1360	0.2297	0.2912	0.030*
C17	0.3211 (4)	0.5724 (3)	0.31814 (11)	0.0235 (4)
H17A	0.4806	0.6220	0.3388	0.028*
H17B	0.2254	0.5483	0.3576	0.028*
C18	0.2969 (3)	0.7465 (3)	0.27071 (9)	0.0149 (3)
H18A	0.1607	0.7682	0.2819	0.018*
C19	0.4995 (3)	0.9695 (3)	0.27987 (10)	0.0183 (4)
H19A	0.6400	0.9502	0.2758	0.022*
H19B	0.4847	1.0644	0.2425	0.022*
C20	0.7024 (4)	1.2750 (4)	0.36377 (12)	0.0264 (4)
H20A	0.6966	1.3446	0.4099	0.040*
H20B	0.7055	1.3735	0.3262	0.040*
H20C	0.8392	1.2488	0.3659	0.040*
C21	-0.1169 (3)	0.7272 (3)	0.01827 (10)	0.0168 (4)
H21A	-0.2417	0.6306	0.0408	0.020*
C22	-0.0168 (4)	0.9508 (4)	0.04382 (14)	0.0185 (5)
H22A	-0.0744	0.9937	0.0834	0.022*
C23	0.1775 (4)	1.1297 (3)	0.01277 (11)	0.0234 (4)
H23A	0.1619	1.2711	0.0173	0.028*
H23B	0.1697	1.0881	-0.0387	0.028*
C24	0.4096 (4)	1.1644 (3)	0.05044 (12)	0.0244 (4)
H24A	0.5235	1.2168	0.0161	0.029*
H24B	0.4556	1.2818	0.0902	0.029*
C25	0.4086 (3)	0.9560 (3)	0.07954 (10)	0.0181 (4)
H25A	0.4751	0.9678	0.1273	0.022*
C26	0.3173 (3)	0.7468 (3)	0.04160 (10)	0.0169 (4)
H26A	0.3207	0.6251	0.0656	0.020*
C27	0.2129 (3)	0.7032 (4)	-0.03583 (11)	0.0210 (4)
H27A	0.2477	0.5885	-0.0601	0.025*
H27B	0.2814	0.8411	-0.0603	0.025*
C28	-0.0445 (4)	0.6248 (4)	-0.04210 (11)	0.0195 (4)
H28A	-0.0959	0.6644	-0.0882	0.023*
H28B	-0.1185	0.4610	-0.0420	0.023*

Atomic displacement parameters	(λ^2)
Atomic alsplacement parameters	(A)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01358 (9)	0.00928 (8)	0.01085 (8)	0.00528 (7)	0.00132 (6)	0.00121 (6)
Cl1	0.0390 (3)	0.0184 (3)	0.0208 (3)	0.0188 (3)	-0.0037 (2)	0.0012 (2)
N1	0.0149 (7)	0.0133 (7)	0.0125 (7)	0.0072 (6)	0.0014 (6)	0.0026 (6)
01	0.0225 (8)	0.0499 (10)	0.0204 (7)	0.0196 (7)	0.0088 (6)	0.0144 (7)
C1	0.0147 (8)	0.0203 (9)	0.0174 (9)	0.0060 (7)	0.0018 (7)	0.0006 (7)
C2	0.0181 (9)	0.0188 (10)	0.0235 (10)	0.0044 (8)	-0.0007 (8)	-0.0036 (8)
C3	0.0201 (9)	0.0253 (10)	0.0161 (9)	0.0092 (8)	-0.0008 (7)	-0.0040 (8)
C4	0.0168 (9)	0.0160 (10)	0.0114 (9)	0.0085 (8)	0.0006 (7)	0.0031 (7)
C5	0.0171 (9)	0.0231 (10)	0.0140 (9)	0.0091 (8)	0.0021 (7)	0.0032 (8)
C6	0.0226 (10)	0.0322 (12)	0.0246 (10)	0.0129 (9)	0.0106 (8)	0.0070 (9)
C7	0.0212 (9)	0.0145 (9)	0.0152 (9)	0.0053 (8)	0.0021 (7)	-0.0023 (7)
C8	0.0193 (9)	0.0110 (8)	0.0175 (9)	0.0021 (7)	-0.0009 (7)	-0.0004 (7)
C9	0.0152 (9)	0.0183 (10)	0.0287 (11)	0.0009 (8)	0.0009 (8)	0.0019 (8)
C10	0.0167 (9)	0.0228 (10)	0.0259 (10)	0.0089 (8)	-0.0022 (8)	0.0030 (8)
C11	0.0172 (9)	0.0145 (9)	0.0202 (10)	0.0092 (8)	0.0008 (8)	0.0052 (8)
C12	0.0192 (9)	0.0125 (8)	0.0137 (8)	0.0059 (7)	0.0001 (7)	0.0041 (7)
C13	0.0228 (10)	0.0235 (10)	0.0165 (9)	0.0077 (8)	0.0055 (8)	0.0073 (8)
C14	0.0297 (11)	0.0233 (10)	0.0146 (9)	0.0070 (9)	0.0061 (8)	0.0008 (8)
Rh2	0.00948 (8)	0.01340 (8)	0.01073 (8)	0.00511 (7)	0.00209 (6)	0.00113 (6)
Cl2	0.0144 (2)	0.0360 (3)	0.0181 (2)	0.0139 (2)	0.00577 (17)	0.00443 (19)
N2	0.0146 (8)	0.0178 (8)	0.0128 (8)	0.0088 (7)	0.0032 (6)	0.0012 (6)
O2	0.0210 (7)	0.0207 (7)	0.0169 (7)	0.0040 (6)	0.0009 (5)	-0.0041 (5)
C15	0.0245 (10)	0.0155 (9)	0.0197 (9)	0.0097 (8)	-0.0005 (8)	-0.0005 (7)
C16	0.0330 (12)	0.0209 (10)	0.0244 (10)	0.0152 (9)	0.0014 (9)	0.0052 (8)
C17	0.0299 (11)	0.0212 (10)	0.0183 (9)	0.0105 (9)	-0.0015 (8)	0.0035 (8)
C18	0.0146 (8)	0.0192 (9)	0.0123 (8)	0.0084 (7)	0.0018 (7)	0.0001 (7)
C19	0.0208 (9)	0.0179 (9)	0.0173 (9)	0.0094 (8)	0.0028 (7)	-0.0002 (7)
C20	0.0235 (10)	0.0200 (10)	0.0290 (11)	0.0050 (8)	-0.0063 (9)	-0.0043 (8)
C21	0.0163 (9)	0.0189 (9)	0.0136 (8)	0.0063 (7)	-0.0011 (7)	0.0025 (7)
C22	0.0223 (11)	0.0187 (12)	0.0160 (10)	0.0106 (10)	-0.0004 (8)	0.0016 (9)
C23	0.0339 (11)	0.0130 (9)	0.0204 (10)	0.0075 (8)	0.0003 (8)	0.0038 (7)
C24	0.0234 (10)	0.0158 (9)	0.0250 (10)	-0.0009 (8)	0.0049 (8)	0.0022 (8)
C25	0.0128 (8)	0.0214 (10)	0.0159 (9)	0.0027 (7)	0.0045 (7)	0.0021 (7)
C26	0.0158 (9)	0.0207 (9)	0.0170 (9)	0.0088 (8)	0.0087 (7)	0.0054 (7)
C27	0.0261 (11)	0.0213 (10)	0.0163 (9)	0.0098 (9)	0.0082 (8)	0.0003 (8)
C28	0.0250 (11)	0.0172 (11)	0.0124 (9)	0.0059 (9)	-0.0014 (8)	0.0003 (8)

Geometric parameters (Å, °)

2.1236 (15)	Rh2—N2	2.1263 (15)
2.3960 (6)	Rh2—Cl2	2.3870 (5)
2.1199 (17)	Rh2—C25	2.0985 (18)
2.1021 (17)	Rh2—C26	2.1154 (18)
2.1491 (19)	Rh2—C21	2.1242 (18)
2.1300 (19)	Rh2—C22	2.150 (2)
	2.1236 (15) 2.3960 (6) 2.1199 (17) 2.1021 (17) 2.1491 (19) 2.1300 (19)	2.1236 (15) Rh2—N2 2.3960 (6) Rh2—Cl2 2.1199 (17) Rh2—C25 2.1021 (17) Rh2—C26 2.1491 (19) Rh2—C21 2.1300 (19) Rh2—C22

N1—C4	1.487 (2)	N2—C15	1.494 (2)
N1—C1	1.492 (2)	N2—C18	1.500 (2)
N1—H1	0.9300	N2—H2	0.9300
O1—C6	1.411 (2)	O2—C19	1.415 (2)
O1—C5	1.422 (2)	O2—C20	1.422 (3)
C1—C2	1.534 (3)	C15—C16	1.519 (3)
C1—H1A	0.9900	C15—H15A	0.9900
C1—H1B	0.9900	C15—H15B	0.9900
C2—C3	1.546 (3)	C16—C17	1.533 (3)
C2—H2A	0.9900	C16—H16A	0.9900
C2—H2B	0.9900	C16—H16B	0.9900
C3—C4	1.542 (3)	C17—C18	1.542 (3)
С3—НЗА	0.9900	C17—H17A	0.9900
С3—Н3В	0.9900	C17—H17B	0.9900
C4—C5	1.506 (3)	C18—C19	1.510 (3)
C4—H4A	1.0000	C18—H18A	1.0000
С5—Н5А	0.9900	С19—Н19А	0.9900
С5—Н5В	0.9900	C19—H19B	0.9900
С6—Н6А	0.9800	C20—H20A	0.9800
С6—Н6В	0.9800	C20—H20B	0.9800
С6—Н6С	0.9800	С20—Н20С	0.9800
С7—С8	1.399 (3)	C21—C22	1.395 (3)
C7—C14	1.522 (3)	C21—C28	1.514 (3)
C7—H7A	0.9500	C21—H21A	0.9500
C8—C9	1.506 (3)	C22—C23	1.514 (3)
C8—H8A	0.9500	C22—H22A	0.9500
C9—C10	1.529 (3)	C23—C24	1.540 (3)
С9—Н9А	0.9900	C23—H23A	0.9900
С9—Н9В	0.9900	С23—Н23В	0.9900
C10—C11	1.521 (3)	C24—C25	1.510(3)
C10—H10A	0.9900	C24—H24A	0.9900
C10—H10B	0.9900	C24—H24B	0.9900
C11—C12	1.407 (3)	C25—C26	1.398 (3)
C11—H11A	0.9500	С25—Н25А	0.9500
C12—C13	1.503 (3)	C26—C27	1.519 (3)
C12—H12A	0.9500	С26—Н26А	0.9500
C13—C14	1.527 (3)	C27—C28	1.533 (3)
С13—Н13А	0.9900	С27—Н27А	0.9900
С13—Н13В	0.9900	С27—Н27В	0.9900
C14—H14A	0.9900	C28—H28A	0.9900
C14—H14B	0.9900	C28—H28B	0.9900
C12 Pb1 C11	28.04.(7)	C_{25} Bb2 C_{26}	29.76 (9)
C12 $Rh1$ $N1$	38.94 (7) 97.10 (7)	C_{25} Rh2 C_{21}	38.70 (8) 08.60 (7)
C11 Bb1 N1	00.70 (7)	C_{23} Rh2 C_{21}	93.09(7)
C12 Ph1 C8	90.70 (7) 08.27 (7)	$C_{20} = K_{112} = C_{21}$	02.10(7)
$C_{12} - K_{11} - C_{\delta}$	70.37 (7) 92.12 (9)	$C_{2,3} = K_{112} = N_2$	30.73(7)
$\mathbf{V}_{11} = \mathbf{V}_{11} = \mathbf{V}_{2}$	02.13 (0)	$C_{20} = K_{112} = N_2$	7U.7/(/) 15160(7)
$1 \times 1 \longrightarrow 1 \longrightarrow$	100.31 (7)	$C_2 I \longrightarrow KII2 \longrightarrow IN2$	134.08 (7)
C12—Kn1—C/	δ1.99 (<i>/</i>)	C_{20} —Kn2— C_{22}	δ2.24 (9)
C11-Kh1-C/	90.51 (8)	C26—Rh2—C22	90.28 (9)

N1—Rh1—C7	161.01 (7)	C21—Rh2—C22	38.08 (8)
C8—Rh1—C7	38.17 (7)	N2—Rh2—C22	167.08 (8)
C12—Rh1—Cl1	158.38 (6)	C25—Rh2—Cl2	156.03 (6)
C11—Rh1—Cl1	162.67 (6)	C26—Rh2—Cl2	165.20 (6)
N1—Rh1—Cl1	90.47 (4)	C21—Rh2—Cl2	91.21 (5)
C8—Rh1—Cl1	91.09 (5)	N2—Rh2—Cl2	89.43 (5)
C7—Rh1—Cl1	93.97 (6)	C22—Rh2—Cl2	92.63 (7)
C4—N1—C1	102.50 (14)	C15—N2—C18	103.84 (14)
C4—N1—Rh1	119.03 (12)	C15—N2—Rh2	112.21 (12)
C1—N1—Rh1	114.78 (11)	C18—N2—Rh2	119.48 (12)
C4—N1—H1	106.6	C15—N2—H2	106.9
C1—N1—H1	106.6	C18—N2—H2	106.9
Rh1—N1—H1	106.6	Rh2—N2—H2	106.9
C6—O1—C5	113.45 (15)	C19—O2—C20	111.74 (16)
N1—C1—C2	104.90 (15)	N2—C15—C16	104.54 (16)
N1—C1—H1A	110.8	N2-C15-H15A	110.8
C2—C1—H1A	110.8	С16—С15—Н15А	110.8
N1—C1—H1B	110.8	N2—C15—H15B	110.8
C2—C1—H1B	110.8	C16—C15—H15B	110.8
H1A—C1—H1B	108.8	H15A—C15—H15B	108.9
C1—C2—C3	104.37 (16)	C15—C16—C17	104.50 (16)
C1—C2—H2A	110.9	C15—C16—H16A	110.9
C3—C2—H2A	110.9	С17—С16—Н16А	110.9
C1—C2—H2B	110.9	C15—C16—H16B	110.9
С3—С2—Н2В	110.9	С17—С16—Н16В	110.9
H2A—C2—H2B	108.9	H16A—C16—H16B	108.9
C4—C3—C2	104.89 (16)	C16—C17—C18	105.80 (16)
С4—С3—НЗА	110.8	С16—С17—Н17А	110.6
С2—С3—НЗА	110.8	C18—C17—H17A	110.6
С4—С3—Н3В	110.8	С16—С17—Н17В	110.6
С2—С3—Н3В	110.8	С18—С17—Н17В	110.6
НЗА—СЗ—НЗВ	108.8	H17A—C17—H17B	108.7
N1—C4—C5	110.67 (15)	N2-C18-C19	110.83 (15)
N1—C4—C3	104.52 (15)	N2-C18-C17	105.67 (15)
C5—C4—C3	114.78 (18)	C19—C18—C17	114.30 (16)
N1—C4—H4A	108.9	N2	108.6
C5—C4—H4A	108.9	C19—C18—H18A	108.6
C3—C4—H4A	108.9	C17—C18—H18A	108.6
O1—C5—C4	107.16 (15)	O2—C19—C18	107.61 (15)
O1—C5—H5A	110.3	O2—C19—H19A	110.2
С4—С5—Н5А	110.3	С18—С19—Н19А	110.2
O1—C5—H5B	110.3	O2—C19—H19B	110.2
С4—С5—Н5В	110.3	C18—C19—H19B	110.2
H5A—C5—H5B	108.5	H19A—C19—H19B	108.5
O1—C6—H6A	109.5	O2—C20—H20A	109.5
O1—C6—H6B	109.5	O2—C20—H20B	109.5
H6A—C6—H6B	109.5	H20A—C20—H20B	109.5
O1—C6—H6C	109.5	O2—C20—H20C	109.5
Н6А—С6—Н6С	109.5	H20A—C20—H20C	109.5

H6B—C6—H6C	109.5	H20B—C20—H20C	109.5
C8—C7—C14	123.11 (18)	C22—C21—C28	125.83 (19)
C8—C7—Rh1	70.17 (11)	C22—C21—Rh2	71.97 (13)
C14—C7—Rh1	112.11 (13)	C28—C21—Rh2	109.72 (13)
С8—С7—Н7А	118.4	C22—C21—H21A	117.1
С14—С7—Н7А	118.4	C28—C21—H21A	117.1
Rh1—C7—H7A	87.8	Rh2—C21—H21A	88.2
С7—С8—С9	126.34 (17)	C21—C22—C23	124.4 (2)
C7—C8—Rh1	71.66 (11)	C21—C22—Rh2	69.95 (12)
C9—C8—Rh1	109.19 (13)	C23—C22—Rh2	112.47 (16)
С7—С8—Н8А	116.8	C21—C22—H22A	117.8
С9—С8—Н8А	116.8	С23—С22—Н22А	117.8
Rh1—C8—H8A	89.1	Rh2—C22—H22A	87.6
C8—C9—C10	113.95 (16)	C22—C23—C24	112.19 (17)
С8—С9—Н9А	108.8	С22—С23—Н23А	109.2
С10—С9—Н9А	108.8	С24—С23—Н23А	109.2
С8—С9—Н9В	108.8	С22—С23—Н23В	109.2
С10—С9—Н9В	108.8	С24—С23—Н23В	109.2
Н9А—С9—Н9В	107.7	H23A—C23—H23B	107.9
C11—C10—C9	111.37 (16)	C25—C24—C23	112.97 (16)
C11—C10—H10A	109.4	C25—C24—H24A	109.0
С9—С10—Н10А	109.4	C23—C24—H24A	109.0
C11—C10—H10B	109.4	C25—C24—H24B	109.0
C9—C10—H10B	109.4	C23—C24—H24B	109.0
H10A—C10—H10B	108.0	H24A—C24—H24B	107.8
C12—C11—C10	124.88 (19)	C26—C25—C24	124.98 (18)
C12—C11—Rh1	69.85 (10)	C26—C25—Rh2	71.28 (10)
C10-C11-Rh1	113.50 (13)	C24—C25—Rh2	110.91 (13)
C12—C11—H11A	117.6	С26—С25—Н25А	117.5
C10-C11-H11A	117.6	С24—С25—Н25А	117.5
Rh1—C11—H11A	86.6	Rh2—C25—H25A	87.8
C11—C12—C13	126.47 (18)	C25—C26—C27	123.65 (18)
C11—C12—Rh1	71.21 (10)	C25—C26—Rh2	69.96 (10)
C13—C12—Rh1	110.29 (13)	C27—C26—Rh2	113.19 (13)
C11—C12—H12A	116.8	С25—С26—Н26А	118.2
C13—C12—H12A	116.8	С27—С26—Н26А	118.2
Rh1—C12—H12A	88.4	Rh2—C26—H26A	86.9
C12—C13—C14	112.74 (16)	C26—C27—C28	111.86 (16)
С12—С13—Н13А	109.0	С26—С27—Н27А	109.2
C14—C13—H13A	109.0	С28—С27—Н27А	109.2
С12—С13—Н13В	109.0	С26—С27—Н27В	109.2
C14—C13—H13B	109.0	С28—С27—Н27В	109.2
H13A—C13—H13B	107.8	Н27А—С27—Н27В	107.9
C7—C14—C13	111.54 (16)	C21—C28—C27	112.25 (17)
C7—C14—H14A	109.3	C21—C28—H28A	109.2
C13—C14—H14A	109.3	C27—C28—H28A	109.2
C7—C14—H14B	109.3	C21—C28—H28B	109.2
C13—C14—H14B	109.3	C27—C28—H28B	109.2
H14A—C14—H14B	108.0	H28A—C28—H28B	107.9

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···Cl1 ⁱ	0.93	2.59	3.4888 (16)	163
N2—H2···Cl2 ⁱⁱ	0.93	2.51	3.4028 (16)	162
Symmetry codes: (i) <i>x</i> , <i>y</i> +1, <i>z</i> ; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> .				

